Exercise 33

Let L be a nonzero real number.

- (a) Show that the boundary-value problem $y'' + \lambda y = 0$, y(0) = 0, y(L) = 0 has only the trivial solution y = 0 for the cases $\lambda = 0$ and $\lambda < 0$.
- (b) For the case $\lambda > 0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.

Solution

Consider the case where $\lambda = 0$.

y'' = 0

Solve for y by integrating both sides with respect to x twice.

$$y' = C_1$$
$$y(x) = C_1 x + C_2$$

Apply the boundary conditions in order to determine C_1 and C_2 .

$$y(0) = C_2 = 0$$
$$y(L) = C_1L + C_2 = 0$$

Solving this system yields $C_1 = 0$ and $C_2 = 0$. Therefore, for $\lambda = 0$,

$$y(x) = 0.$$

Consider the case where $\lambda < 0$, that is, $\lambda = -\gamma^2$.

$$y'' - \gamma^2 y = 0$$

This is a homogeneous linear ODE with constant coefficients, so it has solutions of the form $y = e^{rx}$.

$$y = e^{rx} \rightarrow y' = re^{rx} \rightarrow y'' = r^2 e^{rx}$$

Substitute these formulas into the ODE.

$$r^2 e^{rx} - \gamma^2 (e^{rx}) = 0$$

Divide both sides by e^{rx} .

Solve for r.

$$r = \{-\gamma, \gamma\}$$

 $r^2 - \gamma^2 = 0$

Two solutions to the ODE are $e^{-\gamma x}$ and $e^{\gamma x}$. By the principle of superposition, then,

$$y(x) = C_3 e^{-\gamma x} + C_4 e^{\gamma x}.$$

www.stemjock.com

Apply the boundary conditions to determine C_3 and C_4 .

$$y(0) = C_3 + C_4 = 0$$

 $y(L) = C_3 e^{-\gamma L} + C_4 e^{\gamma L} = 0$

Solving this system yields $C_3 = 0$ and $C_4 = 0$. Therefore, for $\lambda < 0$,

$$y(x) = 0.$$

Consider the case where $\lambda > 0$, that is, $\lambda = \mu^2$.

$$y'' + \mu^2 y = 0$$

This is a homogeneous linear ODE with constant coefficients, so it has solutions of the form $y = e^{rx}$.

$$y = e^{rx} \quad \rightarrow \quad y' = re^{rx} \quad \rightarrow \quad y'' = r^2 e^{rx}$$

Substitute these formulas into the ODE.

$$r^2 e^{rx} + \mu^2(e^{rx}) = 0$$

Divide both sides by e^{rx} .

$$r^2 + \mu^2 = 0$$

Solve for r.

$$r = \{-i\mu, i\mu\}$$

Two solutions to the ODE are $e^{-i\mu x}$ and $e^{i\mu x}$. By the principle of superposition, then,

$$y(x) = C_5 e^{-i\mu x} + C_6 e^{i\mu x}$$

= $C_5(\cos \mu x - i\sin \mu x) + C_6(\cos \mu x + i\sin \mu x)$
= $(C_5 + C_6)\cos \mu x + (-iC_5 + iC_6)\sin \mu x$
= $C_7\cos \mu x + C_8\sin \mu x$.

Apply the boundary conditions to determine C_7 and C_8 .

$$y(0) = C_7 = 0$$
$$y(L) = C_7 \cos \mu L + C_8 \sin \mu L = 0$$

Since $C_7 = 0$, this second equation reduces to

$$C_8 \sin \mu L = 0$$

$$\sin \mu L = 0$$

$$\mu L = n\pi, \quad n = 0, \pm 1, \pm 2, \dots$$

$$\mu = \frac{n\pi}{L}.$$

Therefore, for $\lambda = \mu^2 = n^2 \pi^2 / L^2 > 0$,

$$y(x) = C_8 \sin \frac{n\pi x}{L},$$

where n is an integer and C_8 is arbitrary.

www.stemjock.com